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Abstract

The equations of motion for a cantilever beam in bending
vibration are developed in state vector form using a normal
mode approximation. A linear optimal control system generates
a feedback control proportional to the state which is repre-
sented by modal amplitudes and velocities determined using
position information from sensors. The observer gain matrix
and the feedback control gain matrix are both determined from
a steady state optimal regulator which minimizes the related
quadratic performance index. Control is applied through
point force actuators. The effects on beam response of sensor
and actuator location, reduced observation and control spill-
over, restructured control performance index, and a reduced
order optimal regulator are examined. Parameter variations
of the modal amplitudes were tested to note effects on system
stability with both stable and unstable controllers. Singular
perturbation theory is used to reconstruct the control per-
formance index, essentially adding a penalty function against
any control vector that lies in the suppressed modes subspace.
Singular value decomposition is used to construct a transfor-
mation matrix through which observation and/or control spill-
over may be eliminated. A means by which optimal actuator
locations may be determined is also presented.

System rcsponse is shown to be very sensitive to actuator

vi




location. Singular perturbation provided a method through
which control spillover could be minimized for the actuator
locations chosen, however, it did not provide the means by
which the actuators could be positioned such that the spill-~
over effect could be eliminated. Optimal actuator locations
could be found using singular value decomposition. Control
and observation spillover effects could then be completely
eliminated only where the number of actuators was equal to or
greater than the number of modes to be suppressed. Robustness
of system response to modal amplitude errors was very good,

and the unstable controllers tested did not appear to seriously

affect this robustness.




MODERN OPTIMAL CONTROL METHODS

APPLIED IN ACTIVE CONTROL OF A

CANTILEVER BEAM IN BENDING VIBRATION

Introduction

The control of large space structures has received much
attention since the advent of the space shuttle program. Ac-
tive control of the structural vibrations associated with large
structures using modern optimal control methods is one area
presently being investigated. The advantages of using these
methods lie in the fact that the design process can be fully

' automated and adapted to a large class of problems rather
than a specific model configuration. An optimal number and
placement of sensors and actuators could also be determined.
Despite these and other advantages, these methods have seen
little application in the control of large space structures
due to inherent problem areas associated with using them.
Two of the main problem areas deal with model reduction and
modelling inaccuracies. A very large number of modes may be

required to model a flexible structure. Active control of

all these modes would be impractical due to computer, sensor,

and actuator requirements, therefore a reduced order model
of the system must be considered, giving rise to model reduc-

tion error. 1In a complex structure,modelling can be accom-

! plished using finite element approximations, however, this




approximation technique produces modal data whose accuracy
is uncertain. Modelling inaccuracies cause the modal fre-
quencies and mode shapes to be in error.

Balas (Ref 1) discusses a method by which a class of
flexible structures can be controlled through the use of
sensors, actuators, a state estimator, an? state variable
feedback; and he showed that this could lead to closed loop
instabilities in the reduced model when modes other th¢
those controlled are considered. These instabilities are
caused by the combined effect of what Balas termed observa-
tion and control spillover. Sesak (Ref 2) used singular
perturbation theory and a highly mathematical approach toward
eliminating control spillover. Sesak's technigue, however,
gave little insight into how or when it might work. Several

specific examples were shown, but no general results were

obtained. In an attempt to explain the singular perturbation
approach, Coradetti presented an analysis of the limiting :
case of the singular perturbation method and showed that it
was equivalent to finding a transformation matrix which re-
duced control spillover. This transformation matrix can be
determined from singular value decomposition of the control

matrix associated with those modes in the model that are not

actively controlled. Using this technique actuator locations
could be predetermined to produce a transformation matrix

which would eliminate control spillover. Actuator placement
and the number of actuators necessary to achieve this result,

however, were not examined in depth; and applying this




technique to eliminate observation spillover was not
considered.

The purpose of this thesis is to apply Balas' method to
a cantilever beam and determine the effect on the beam re-
sponse of sensor/actuator location, and reduced observation
and control spillover using singular perturbation and singu-
lar value decomposition techniques. 1In addition, recent work
by Johnson (Ref 5) has shown that standard optimal control
design can Jead to unstable controllers. The effects of a
stable versus an unstable controller on system robustness to
modelling inaccuracies, specifically modal error, is also
considered.

The approach taken involves forming a discrete system
through normal modes approximation. Position sensors are
used to determine modal amplitudes, from which a state esti-
mator reconstructs the mode shapes. Control is accomplished
using point force actuators through state variable feedback.
Both the observer and feedback control use gains produced
from steady state optimal regulators. Control performance
index restructuring, using singular perturbation, penalizes

the control against acting on modes other than those desired.

Singular value decomposition of the modal amplitudes at the
sensor or actuator location is used to develope a transforma-

tion matrix through which observation and/or control spill- i

over may be eliminated.

The main areas examined in this report are: system sensi-

tivity to sensor and actuator placement; reducing observation




‘( or control spillover using singular perturbation and singular

value decomposition techniques; the number of actuators re- A
quired and placement necessary to eiiminate control spill-

over; system robustness to modal error for both stable and

unstable controllers.
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System Model

Equations of Motion

The continuous differential equation of motion for a

cantilever beam in bending vibration is defined in Meirovitch

(Ref 4:208,209) as

2 e 2L e = neo D (1)
with boundary conditions
Y(0,t) =0
aYézrt) lx=0 =0
(2)
2
EI (x) 3 LKt Z:{f’t) |x=L =
2
where x is the variable along the length of the beam, Y is
the vertical deflection, EI(x) is the bending stiffness, £
is the applied force, L is the length of the beam, and m is
the mass/unit length. The case considered is that of a
uniform beam in free vibration so that
EI(x) = constant
f(x,t) =0 (3)
m(x) = constant
A discrete form of Eq (1) can be obtained through the
substitution
5




Y(x,t) =

I ¢ (x)U; () (4)
1

e

1

where ¢i are the mode shapes, U,

j are the mode amplitudes, and

n is the number of modes. An exact solution would require
that n equal infinity; however, for practical purposes n is
chosen to be much less than infinity. This truncation intro-
duces inaccuracies termed model reduction errors. The above

substitution leads to

d*e. (x)
—t - B.%.(x) =0 (5)
dx* 11
where \
wi m
= (6)
1 ET
with boundary conditions
¢i(0) = 0
dé; (x)
=0
dx x=0
(7)
a%¢, (x) o
dx? x=L
3
d ¢i(x) C o
dx? x=L

The solution of equation (5) subject to these boundary

conditions is

¢i(x) - (sing.L - sinhBiL)(sinBix - sinhg;x)

L. -
(mL) SlnBiL SlnhBiL

(cosBiL + coshBjL) (cosBix - coshgjx)

+ (8)

X . .
{mL) 51nBiL 51nhBiL

where B;L is determined from the characteristic equation




r

cosBf.L coshf.L = -1. (9)
i i
The mode shapes, ¢i' are normalized with respect to the con-
stant mass density, that is

L

é m¢i§x)¢j(x)dx = Gij (10)

where Gij is the Kronecker delta. These mode shapes and modal
amplitudes are then used to form a linear system model to

which modern control theory is applied.

Linear System Model

The number of modes, n, in a structural model may still
be very large. For practical purposes the controller should
be concerned with as few modes as possible and still maintain
a stable system. A determination of which modes need to be
controlled will be discussed later, however, for the time be-
ing it is accepted that the formulation of a linear model
should allow for this. If the model to be developed is con-
sidered to consist of three parts, a controlled, a suppressed,

and an un-modelled part; Eq (4) can be partioned.

Y(x,t) = Y (x,t) + Y (x,t) + Yyu(x,t) (11)
Where the suppressed modes are those over which control is
unnecessary, however, their behavior must be considered. The
un-modelled modes are generally the higher frequency modes
where natural damping is condisered adequate to preclude the
development of any instabilities.

The controlled part of Eq (11) is

C

Y (x,8) = I ¢ (x)Uj(¢) (12)

i=1




B

the suppressed part

Cc+s
Y (x,t) = I ¢.(x)U;(t) (13)
S j=c+1 J J
and the un-modelled part
n
Yo (x,t) = 2 Oy (%) Uy (t)
um k=c+s+1 k

where ¢ represents the number of controlled modes, s is the
number of suppressed modes, and n is the total number of modes
in the model. Further consideration of the un-modelled modes,
however, is necessary in that the controller that will be de-
veloped in the linear model will have no knowledge of these
modes. The purpose of discussing the un-modelled modes is to
demonstrate that the model reduction process actually involves
two truncations, the first to a finite number of modes to des-
cribe a structure, and the second limiting concern only to
those considered critical. Both of these truncations lead to
inaccuracies.

The amplitudes of the controlled and suppressed modes to-

gether with their rates of change form the states

. T
T (t) = [UiT(t) UiT(t):l (14)
and
To(t) = | UsT(t) s U.T(t) T (15)
S J : d

substituting this into the discrete form of the equation of

motion, the system can be modelled by

\7c(t) éc\'ic(t) + gcf(t) (16) -

Vg (t) = AgTs(t) + BGE(t) (17)

where a dash over a variable represents a vector, and a dash




under a matrix. f(t) is the vector of control inputs.
The system parameter matrices are
Y I
e - =2C.w (18
'__—c 171
o 1]
Ag = (19)
- =2C.w.
=S 33
0 ]
B = (20)
Zc
~C
o
B (21)
=s
Bs

where W,y wj are the natural frequencies of the controlled and
suppressed modes respectively, the Q matrices are diagonal ma-
trices whose elements are the squares of the natural frequencies,
¢ is the damping factor, 0 and I are the null and identity ma-

trices, B

c and By are the matrices whose columns are the mode

shapes evaluated at the actuator locations, XjeeoXge

6, (x )00 (x,)

§ = . . (22)

¢c(xl)°°-¢ (xa)
T

r:t’c+l.(x1)"'q’c+1.(xa)
y B_ = . . (23)

Dong (X )2 by (x,y)

! The sensor ouatput is given by




Y(t) = ¢ Vo(t) + CglUg(t) (24)

Co =[Gt 2] (25)
c, =[95 gj (26)

C and Cs are matrices whose rows are the mode shapes of the

~C

controlled and suppressed modes evaluated at sensor locations,

xl...xb. ;

¢lfxl)~°-¢cfx1)

C = . . (27)
~c L] L]
¢l(xb)°°'¢c(xb)
F;c+lfx1)'.'¢c+sfx1)
C . A4 (28)
~s . .
Lfc+l(xb)"'¢c+s(xb)
The null 0 portion of Ec and gs matrices represent the rates ;

; of change of the mode shapes at sensor locations and are 0

| since displacement only sensors are used. Although this model
has been developed for a relatively simple structure using
exact mode shapes, the method could easily be used on complex
structures using finite element approximations, where no
simple continuum description is available.

Since we wish to use state variable feedback, complete

3 knowledge of Vc(t) is required, however, the only knowledge
available is that contained in the sensor outputs. There-
fore, a state estimator is required in order to implement

the control system.

10
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Observer Model and

Feedback Control System

The state estimator has the form
Vc = éCVC(t) f ch(t) + K Y(t) - Y(t) (29)
where Vg (t) is the estimate of V_(t) such that

Vo (t) = T (t) + &(t) (30)
where e(t) is the error, the sensor output is

T(t) = c T _(t) + C T (t) (31)

Co
The output corresponding to the estimated state is
Y(t) = CV _(t) (32)
-c c

Using equations (29), (30), (31), (32) and (16) it can be
shown that

e(t) = (A, - K Cole(t) + K C .V (t) (33)
The observer gain matrix, K, must be developed such that this
estimator error decays more rapidly than the system dynamics
for proper system response. The eigenvalues of (éc - KCL

determine the decay rate. Since these eigenvalues are the

T. QCTKT), the equations of

same as the eigenvalues of (éc
motion for the sensing system can be modelled in the form

wie) = a_ (e - c "5 (34)
where

F(t) = Kw(t) (35)
The observer gain matrix, K, is then calculated using a steady

state optimal regulator, where

oy =T =, =T, =
J=13%/wQw+gR,qgadt (36)

o8

11




is minimized. The optimal solution is given by

T -1
= e P

where P is the solution to the algebraic matrix Riccati

equation
Tlcp+o =0 (38)

where R, and Q. are weighting matrices.

b
Similarly, the control feedback gain matrix, G, is

calculated using the steady state optimal regulator

- T I -
(T, FV, + T RE)dt (39)

(]

f

N
o 8

where F and R are weighting matrices, and
f(t) = ch(t)
The optimal solution is given by

- T
= - 1
G=-R!B S (40)

where S solves the matrix Riccati equation

T -1, T N
SA +A S -SBRIBS+F=0 (41)

using these results the equations of motion for the system

are now B

V (t) = (A + BG)V_(t) + B G e(t) (42)
c < =~ c -

B
-
and

<
ﬁ
|

= AV _(t) + BSG Vo (t) + BgG e(t) (43)

By defining a composite system state vector

T
Z(t) = [ch(t) et(t) VST(tﬂ (44)

a closed loop system model with state variable feedback con-

taining the effects contributed by suppressed modes can be

written as




A +B G B G 0
~c ~c~ —c— =

Z(t) = 0 A_-KC KC_ | Z(t) (45)
B G B G a
—s— —s— ~s

The terms K Es and §s§ are the observation and control spill-
over terms, respectively. It is evident from this equation
that the conbination of the two could produce instabilities

in the system.

Linear Control System Represented

In Block Diagram Form

The equations now governing the system are

V = AV + BE state equation (46)
Y¥Y=¢cV displacement equation  (47)
f=¢ §c control equation (48)
Vc = AV, + BT + X(Y-Y) estimator equation (49)

Putting the system into block diagram form and separating the
plant from the controller yields Figure l. Johnson, (Ref 7)
showed that through manipulation, this diagram can take the
form of Figure 2, from which it is easily seen that the trans-

fer function for the controller is
£ -
=(s) = K(SI - A - BG + KC_)"!G (50)
Y c c c

If any of the eigenvalues of (Ac + BG - KCC) are positive,
the controller would be unstable. It is interesting to note

that in a standard optimal design process an unstable con-

troller could unknowingly be developed, which when connected to




the plant would still produce a stable system. 1In addition
to the devastating effects this unstable controller could
have on a system if it were ever disconnected from the plant,
possibly through an electrical interuption, a sensitivity
study of system response to parameter varijiation was conducted

for both stable and unstable controllers.

14
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Fig 1. System Represented in Block Diagram Form
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£ + v v ¥
———> B —— | INTEG Pl c |[—>
1
' + '
[ ! (
i i A g :
' I
' ]
' |
I ]
| Controller |
]
\ _ A A -
] £ VC VC + Y :
¢ G |& INTEG K g !
+
| A +BGKCo

Fig 2. System Represented in Modified Block Diagram Form
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Singular Perturbation Optimal Control

This section outlineé the procedure developed, by Sesak,
of applying singular perturbation theory to the control of a
flexible structure. The method is designed to decouple the
suppressed and the controlled systems by reducing the signal
level in the suppressed portion of the plant. Under these
restrictions the controller does not excite the suppressed
modes, therefore, the suppressed forced response (control
spillover) goes to zero. It can be seen in Eq (45) that if
the control spillover is zero, the eigenvalues of the system
would be the eigenvalues of the diagonal elements. Since
these are designed to be negative the system would then be
stable.

Singular perturbation is a variation that changes the
order of the differential equation characterizing a particular
dynamic system. Consider the performance index of the system

under consideration given as

=]

T T T
J=% (f) (vc FVC + Vg sts + £ Rof)dT (51)
subject to
v A, O v B
C C
L= |+ £ (52)
vy 0 A Vg B

It is desired that the dynamics associated with the suppressed

modes be stable, therefore, the singular perturbation constraint

16




4 - X

V = 0 is used. This yields

0

L]

AV_ + B_f (53)
S s s
or

\
s

]

-A_-'B_f (54) |
a s
substituting this into Eq '(51) yields
T = ¢TI Tax -1,T -1
Vgt Vg E'B, " (AgT7) "Qg (AT ) BgE (55)

where QS is a positive semi-definite weighting matrix. The

new performance index is

Jg=15%

O 8

v TFv, + £T(Ry + Bl (Ag™1) TQgAgT!Bg) £t (56)
subject to 4

V, = AV, + Bof (57)
The weighting matrix, Qg is designed to change the weighting
of the penalty on the suppressed modes until control spill-
over is eliminated. Whether or not this is always possible,
or under what conditions it is, was not discussed. Several
specific examples were shown, but no general results were
obtained. It was found that the method would reduce control

spillover, using very large gains, however, the amount of re-

duction was very dependent on actuator locations.

17




Transformation Method

A method, presented by Coradetti, for eliminating con-
trol spillover, using a transformation matrix, is developed
in this section. The transformation matrix, which is deter-
mined from singular value decomposition of the suppressed

modal amplitudes, is used to constrain K, such that

BKke = 0 (58)
and
Bke # 0 (59)

thereby eliminating control spillover, and allowing complete

control over the modes chosen. The matrix B

By may be express-

ed through singular value decomposition in the form
B,=UWX (60)
where
Bs(m x n) is a rectangular matrix of modal amplitudes
evaluated at the actuator locations
U (m x m) is the orthogonal matrix of left singular

values

X (n x n) is the orthogonal matrix of right singular

values
W (m X n) = g 0 , where all elements are zero except
0 0
TS 6;4» 1 = 1,...9. These are the

non-zero singular values of Bg-
The number g is equal to the rank

of B .
-s

18




Partitioning U and X

u=[u ; Ué] (61)

Q

where Uq(m xq), Ulmxr), g+r=m

x=|—x : X 62
2= [xg s P;I (62)
where Xq(n x q), Xp(n xp)l, g+p=n
then
B = U oX © (63)
= 9 g
Defining
L=X and T = X (64)
and since X is an orthogonal matrix
T
- = = 65
Bl = UyoX,"Xg = Ugo I = U409 (65)
= U oX TX_ = 0=0 (66)

BT U U o
—S— —q—qa P —q-
In order to acheive Eq (66) certain conditions have to be met.

If the rank of gs(m x n) is r, then the nullspace formed of
solutions to Esg = 0, has n -~ r free variables as independent
parameters. If r = n, there are no free variables and the null-
space only contains T = 0. 1In the case of r < m there are n -

r constraints on T in order for B,T = 0 to be solvable. If

one solution exists, then every other solution differs from it

by a vector in the nullspace of gs. Therefore, in the case of

r n < m the only T matrix that is possible for Esg =0 is
T = 0. However, when r < m, n, then there will always be a solu-
tion to §sg = 0, for which T # 0. 1If Es is of full rank, r =

min (m,n), and must therefore be reduced to realize Eq (66).

Since m is determined by the number of modes suppressed and




n by the number of actuators in the system, a T matrix can be
found which satisfies Eg (66) only when the number of actuators
are equal to or greater than the number of modes to be suppressed.
The minimum number of actuators, that can be used successfully
with this method, is two; since a matrix of rank 1 cannot be
reduced.

The reduced order optimal regulator problem is defined by

[« ]
g =% /T "EV + ERE QT (67)
o ¢°F° -
subject to . _ _
V. = AVo + BeE (68)

with the additional constraint

B,f =0 (69)

Defining a new control, U, where

£ =1T0 (70)

The new optimal regulator problem is

0
J=%/ VETFVE + ETRTﬁ aT (71)
0 - - :
subject to . _ _ I
V. =aV_+BU (72) {
c - C - :
where
= B 73
and (
T
Rp = T°RT (74)
The solution is given by i
U= -ETVC (75) i
= -ig T
Kp = By 'Bp'S (76)

where S is solved from the matrix Ricatti equation

=F + + A Ts + -1g Ts 77
0=F+SA +A7°8 +8BR"B.S (77)

20
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The gain matrix is then

K, = TK; (78)

Actuator locations were determined using the singularity
computer program (Appendix B). The program was used to vary
actuator locations and determine the nonzero singularities

of B

Bg- Actuator locations were chosen such that one of these

singularities approached zero, indicating a reduction of the
rank in By These actuator locations were then used in the
main program and the T matrix constructed through singular

value decomposition of By at these locations.
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Limit Method

This section contains an extension of Coradetti's
Transformation Method which further explains Singular Per-
turbation Optimal Control. This information was not avail-
able durring the investigation conducted on Singular Pertur-
bation Optimal Control and it serves to substantiate the
results obtained.

Considering Egs (75) and (76), the matrix Ricatti Eqg

(77) can be rewritten as

= T T 1Ty T
0=F+sa +2aTs+5BT(TRDITE,S (79)
Defining a new matrix, H, where
#= 1R DT (80)
Eq (79) becomes
= T T
O=F+S8SA, +A S+ S BHBS (81)
The associated performance index is
T e T T
J=% SV FV, + T H'f AT (82)
o € —¢c
subject to . _ _
Vc = écvc + B.f (83)

Comparing Egs (81) and (82) to Egs (41) and (67), it can be seen

that H™! = R and R™! = H; however, by design, T(T'R T)TT is not

full rank. Therefore, H™! does not exist; consequently, there
is no finite matrix R = H™! such that R™! = H, except possibly

in a limiting case. Defining a new control weighting matrix, Ry

- T = =1
R, =R+aB QB =k (84)
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where Q is any positive definite matrix and a is any positive
real scalar. Coradetti shows, in an involved mathematical

proof, that, in the limiting case of a » », R "! = H, Adding

-s
this to the performance index yields
P T T
J =% g V,"FV, + T(R + aB "0 B )T dT (85)

It is now quite clear that it is penalizing the performance
index against any control vector that lies in the subspace
occupied by Bg- Multiplying gsTQ Es by a large enough scalar
would effectively eliminate any control acting on the suppress-
ed modes, however, in theory, it would require an infinite
value to accomplish this. Coradetti found that this method
will decrease control spillover until the numbers involved
become so large that computer roundoff errors cause problems
in matrix inversion, necessary in solving the matrix Ricatti
equation. Singular Perturbation Optimal Control essentially
applies the Limit Method with the substitution

aQ = (és_l)TQsAs-l (86)
made in Eq (84). The Limit Method, as presented, shows that

while Singular Perturbation Optimal control can reduce control

spillover, it can never actually eliminate it.




Computer Model

The function of the main computer program was to assemble
the system matrix and determine the associated eigenvalues.
The program was modified as needed to incorporate singular
perturbation optimal control, the transformation method, and
parameter variations. A listing of the program using the
transformation Method, and permitting parameter variation is
listed in Appendix A.

The first function of the program was to assemble the
required matrices. Input data necessary consisted of: beam
length, mass, and bending stiffness; sensor and actuator lo- ;

cations; and the roots to the characteristic equation. The

root values input were: mode 1 - 1.875, mode 2 - 4.694, mode
3 - 7.855, mode 4 - 10.996, mode 5 - 14.137, mode 6 -~ 17.278.
The beam length, mass, and bending stiffness were 1, and F,

Fob’ b
trix. The natural frequencies, determined by squaring the

R and 50 weighting matrices were each the identity ma-

roots to the characteristic equation, are then used to con-

struct the Al and és matrices. Equation (8), for the modal

amplitudes, is solved using subroutine Modes (Appendix A),

and used to fill matrices Ec' Es’ gc and gs’ Using F, Ec’

éc and R, the steady state algebraic Ricatti equation is
solved using subroutine MRIC from the Aerospace Medical Re-

search Laboratory Library. The optimal control gain matrix,
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G, is then solved for using Eq (40). The optimal observer
gain matrix, K, is solved for in an identical manner. The
system matrix, Eq (45), was then constructed, and subroutine
EIGRF from the International Mathematical and Statistical
Library (IMSL) produced the complex eigenvalues associated

with the system. The weighting Matrix, Q was varied from

=g/’
1 to 1l x 10'* in examination of the singular perturbation
optimal control method. Subroutine LSVDF, from the IMSIL 1i-
brary uses singular value decomposition to construct the
transformation matrix, T, from which a reduced order gain
was developed.

A second computer program, listed in Appendix B, was used

to generate data for determining sensor and actuator placements.

In this program sensor or actuator location was varied and the
non-zero singularities associated with C, or By were determined
through singular value decomposition. The desired sensor or
actuator locations were those which caused one of the non-zero
singularities to most closely approximate zero.

The sensitivity study was made using up to *20% variation
of the elements of the B_, B,, C,, and C, matrices. This was
accomplished by multiplying the elements of these matrices by
one factor, if the sum of its subscripts were even, and by
its negative counterpart if the sum was odd. This effectively

i alters the mode shapes, simulating modal error. Although this

; method does not account for any frequency errors incurred, the

results should essentially reflect the effects produced by

modal amplitude error.




Outline of Investigation

An investigation was conducted examining Singular Per-
turbation Optimal Control and the Transformation Method
applied to the model developed of a cantilever beam. 1In
addition, an investigation to determine system robustness
to parameter variations was made.

The first area investigated was the use of Singqular
Perturbation Optimal Control to eliminate control spillover.

A single sensor and actuator were initially used to control
three modes and suppress one. When it was found, that in the
process of reducing the control spillover, control over the
first three modes was gradually being lost, another sensor

and actuator were added to the system. It was then possible
to decrease control spillover and still maintain control. The
conditions which determine the reduction realized using this
method are discussed.

The second area investigated was the Transformation
Method for eliminating control spillover. Two sensors and
two actuators were used to control two modes and suppress two.
Demand on the system was then increased to control three modes
and suppress three. The effectiveness of the method, in elimi-
nating spillover effect and uncoupling system eigenvalues, under
these conditions, was examined and some general conclusions

were drawn.




The elimination of observation spillover using the
Transformation Method was then investigated.
Finally, an investigation of system robustness to para-

meter variations which simulated modal error, was made. Sys-

tems with both stable and unstable controllers were considered.




Investigation

This chapter consists of discussions of the results

obtained in investigating the areas presented in the outline.

Singular Perturbation

Optimal Control

This section of the investigation applies singular per-

turbation techniques to reduce control spillover. Initially,

a single co-located sensor/actuator pair were used to control
the first three modes and suppress the fourth. The weighting
matrix, Q +» was increased from 10° to 10'*, and system response
was examined. As gs approached 10!"*, the real part of the
eigenvalue associated with the suppressed mode, which was in-
itally positive, approached zero, indicating the method was
reducing control spillover. However, the real part of the

eigenvalues associated with the three controlled modes, which

were all initially negative, also approached zero, indicating
a general loss of control in the system. Since the method did
not appear suited to single sensor/actuator operation, two
sensors and actuators were then used. In this case control
could be maintained, while control spillover was reduced,
however, as can be seen in Figure 3, little suppression of the

fourth mode is realized until Q  gets very large (= 10'!) as

compared to R and F (= 1). After this point, the curve flattens,
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and an infinite weighting would theorefically be required to
achieve complete suppression. The suppressed mode, in this
case, had a3n eigenvalue of 1.501, #3j120.37 using a Qg of 1,

and an eigenvalue of 0.0021, *3120.91 using a Q. of 10'*, which
demonstrates the reduction in control spillover achieved using
this method. It can be concluded, therefore, that while this
method is effective in reducing control spillover, it will
never actually eliminate it. The control spillover will be re-
duced, as Qs increases, only to the point where the numbers in-
volved become so large that computer roundoff error becomes
significant. The method also appears to require a reduction

in control to reduce control spillover, explaining why control
was lost in single actuator operation. These results can be
substantiated in light of Coradetti's Limit Method, where com-

puter roundoff error for very large Q_ eventually caused prob-

S
lems in matrix inversion, necessary in solving the matrix

Ricatti equation.

The Transformation Method

In this sectién, a transformation matrix is generated to
produce a gain matrix for which control spillover is eliminated.
Two co-located sensor/actuator pairs were used to control the
first two modes and suppress modes three and four. 1In apply-
ing the Transformation Method, Es should be made not full rank.
In the case above, the Bg matrix has two non-zero singular
values usually associated with it, determined from singular
value decomposition. Since the number of non-zero singular

values of a matrix equals its rank, if one of these can be made
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approximately zero, through appropriate actuator placement,

the rank of Es would decrease from two to one. The Singu-
larity Computer Program (Appendix B) was used to produce Fig-
ure 4, from which actuator locations could be determined to
decrease the rank of Es' in this figure, actuator 1 position
is held constant and the minimum singular value of Es is
plotted as actuator 2 position is changed. Actuator combina-
tions are chosen such that the minimum singular value approaches
zero, excluding co-located actuators, which produce trivial sol-
utions. Two cases are examined in this figure yielding useful
actuator combinations of : 0.6, 0.285; 0.6, 0.89; 0.2, 0.585;
0.2, 0.855. The method appeared to work extremely well using
these actuator combinations, essentially yielding zero eigen-
values for the two suppressed modes and uncoupling system
eigenvalues to six decimal places. Table I demonstrates both
of these results. The largest control spillover terms were
on the order of 10™*. These terms would decrease as actuator
placement approached more precisely the point producing a zero
singular value. A compariscn between a system utilizing the
Transformation Method, and the same system not using it, is
presented in Table II, demonstrating the Transformation Method's
effectiveness in suppression and uncoupling of system eigen-
values.

Demand on the system was then increased to control the
first three modes and suppress modes four, five, and six. As
pointed out in the presentation of the Transformation Method,

actuator placement, when there are more modes to be suppressed
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Table I

Modal Suppression and Eigenvalue Uncoupling

Using the Transformation Method

Eigenvalues
of A+ BG -1.341328 0. (C~-1)
< - -15.953688 G. (c-1)
-5.979912 +320.493 (c-2)

Eigenvalues
of A, - K C¢ -0.923323 +33.591 (0-1)
-13.493944 +§15.910 (0-2)

Eigenvalues of

the System -2.883098x1077 +3120.912 (s-4)
+3.058266x10"° +361.701 (S-3)
-1.341328 0. (C-1)
-15.953691 0. (C-1)
-5.979912 +320.493 (C-2)
-0.923323 +33.591 (0-1)
-13.493942 +315.910 (0-2)

Two Controlled, Two Suppressed Modes

Sensor Locations 0.4 0.2
Actuator Locations 0.6 0.285
Singular Values of By 2.12 0.000011
(S-x) - (Suppressed-Mode) Eigenvalues

(C-x) - (Controlled-Mode) Eigenvalues
(0-x) - (Observer-Mode) Eigenvalues

Uncontrolled Structural Damping Ratio = 0.0
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than actuators, could not be chosen such that one of the non-
zero singular values of B, would go to zero. However, actuator
placement could be chosen to minimize a non-zero singular
value. The non-linear behavior of this singular value is dem-
onstrated in Figure 5 which represents three of the actuator
placement combinations used. The figure was generated setting
one actuator at a specific location and varying the location of
the second actuator. The curves represent the minimum singular
value found using all possible actuator locations with a step
size of 0.05 from 0.0 to 1.0. The curves also demonstrate that
the only actuator combinations that can produce a zero singu-
lar value, indicating a reduction in the rank of Es’ is where
the actuators are co-located, representing a trivial solution.
The minimum value of these curves will provide the best, in

the least squares sense, actuator combination to be used with
the method. Results obtained in this case are presented in
Tables III and IV. Table III represents the results obtained
using the actuator combination (0.95, 0.79), which produced

the smallest singular value (0.16), and Table IV, an actuator
combination of (0.65, 0.90), which produced a singular value

of 0.265. The third actuator combination (0.90, 0.66) pro-
duced results very similar to those in Table IV and was not
presented. The spectral radius of §S§ is the square root of
the sum of the squares of the elements in B G. Both systems
shown did very well in controlling and suppressing the modes
required. Also, uncoupling of system eigenvalues was very

good. It can be seen when comparing these two tables that
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Table ITI

System Response Using the Transformation Method

With a Minimum Singular Value for B, of 0.16

Eigenvalues
of A, + B.G -1.2101 +53.334
= =€ -0.5948 £922.022
-0.3755 £361.701
Eigenvalues
of A - KC -6.8487 0.
< - = -2.3939 0.
-16.4721 +315.624
-31.5344 +339.903
Eigenvalues
of the System : -1.4926 +j298.525
-0.9993 +3199.852
-0.6039 +3120.909
-1.2101 +33.334
-0.5948 +322,022
-0.3755 +361.201
-6.8494 0.
-2.3937 0.
-16.4707 $j15.625
-31.5413 £339.905

Three Controlled, Three Suppressed Modes

Sensors/Actuators Co-located at

Uncontrolled Structural Damping Ratio

(C-x) - (Controlled-Mode) Eigenvalues

(O-x) - (Observer-Mode) Eigenvalues

(8-x) - (Suppressed-Mode) Eigenvalues

Control Spillover,
Spectral Radius of BgG

Largest Term
0.280

0.79

0.05

0.149

(c-1)
(C-2)
(c-3)

(0-1)
(0-1)
(0-2)
(0-3)

(s-6)
(s-5)
(s-4)
(C-1)
(C-2)
(C-3)
(0-1)
(0-1)
(0-2)
(0-3)




Table 1V

System Response Using the Transformation Method

With a Minimum Singular Value for Es of 0.265

Eigenvalues
of A, + BG -1.056 £33.377 (c-1)
' -0.159 +322.033 (C-2)
-0.330 +361.699 (c-3)
Eigenvalues
of A, -KC -3.173 +j1.365 (0-1)
- =-° -19.417 +§21.484 (0-2)
-25.596 +338.826 (0-3)
Eigenvalues
of the System -1.492 +j298.525 (s-6)
-0.999 +3199.852 (S-5)
-0.602 +3120.910 (5-4)
-1.056 +33.377 (Cc-1)
-0.159 +322.033 (C-2)
-0.330 +361.694 (C-3)
-3.173 +91.366 (0-1)
i -19.416 +321.483 (0-2)
! -25.597 +538.828 (0-3)

Three Controlled, Three Suppressed Modes

Sensors/Actuators Co~located at 0.65 0.90
Uncontrolled Structural Damping Ratio = 0.05

(C-x) - (Controlled-Mode) Eigenvalues
(0-x) - (Observer-Mode) Eigenvalues
(S-x) - (Suppressed-Mode) Eigenvalues

Control Spillover, B.G, Largest Term = 0.223
Spectral Radius of B_G = 0.314
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control spillover is less and the system responds better as
the singular value decreased. These effects were verified

through further testing.

Observation Spillover Reduction

This section uses the Transformation Method to reduce
observation spillover. Since the Transformation Method
apparently worked so well in minimizing control spillover,
the method was applied to reduce observation spillover with
the thought that system response may be further improved. 1In
the cases tested, the method was applied to reduce both ob-
servation and control spillcver simultaneously. Again, two
co-located sensor/actuator pairs were used to control three
modes and suppress three. The procedure was identical to
that used in reducing control spillover, and was simplified
due to the fact that the sensors and actuators were co-located.
The results obtained proved interesting in that, although
observation spillover was decreased, the method actually
appeared to decrease the overall stability of the system. 1In
the cases tested, all system eigenvalues remained essentially
the same, except for three. These three were observer eigen-
values associated with the A, - K C, matrix. A representative
example illustrating this effect is shown in Table V, where
control spillover is reduced in both cases, but observation
spillover in only one. The eigenvalues of the three suppress-

ed modes, which are directly influenced by the combined effect

of observation and control spillover, are not significantly
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;éhanged, however, the eigenvalues of the - K C. matrix, an

1_\c
indication of the rate at which the observer error terms decay,
have generally shifted to the right. Evidently, the Transfor-
mation Method, applied in reducing observation spillover, re-

duces observability, much as it reduces control, in achieving

a reduction in spillover. This reduction in observability

has the effect of producing a gain matrix, K, that moves the
eigenvalues of A, - K C, closer to the unstable region. From
these results it appears that applying this method to reduce
the observation spillover in a system would degrade system

response.

Sensitivity of System to

Parameter Variation

This final portion of the investigation introduces mode
shape errors to determine system sensitivity. Systems with
a stable versus an unstable controller are examined. The
system considered used two sensors and two actuators to con-v
trol the first two modes and suppress modes three and four.
The Transformation Method was applied and errors in modal
amplitude, evaluated at the actuator locations, were simulated
up to *20% in 5% increments. Although a great deal of data
was generated for systems with either a stable or an unstable
controller, no definite determination could be made that an
unstable controller produced a system that was more suscept-
able to modal errors. It was noted, however, that as the

simulated error increased, the uncoupling of system eigen-

~-values degraded significantly more in a system with an unstable
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controller, than in one with a stable one. Table VI repre-
sents the results typically obtained in this analysis. The
effect of a 20% simulated error for a system with a stable
controller is compared to a system using an unstable controller,
The same analysis was conducted on a system controlling the
first three modes and suppressing modes four, five, and six,
producing similar results. Although the eigenvalues of the
system did not vary as significantly as the uncoupling effect
in this model, it is possible that this uncoupling sensitivity
could adversely affect a system representing a more complex

model.
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Conclusions

The two main conclusions to be drawn from this report
are that the destabilizing effect, caused through interacticn
of observation and control spillover, on suppressed mode re-
sponse can effectively be reduced, and that the system examin-
ed was quite insensitive to modal error.

Singular Perturbation Optimal Control did not yield re-
sults as encouraging as those found using the Transformation
Method, however, the method was effective in reducing control
spillover. Problems arise in matrix inversion, due to com-
puter roundoff error, when weightings used becdome very large,
and ar infinite weighting would theoretically be required to
completely eliminate control spillover effects. Only in this
limiting case does the Singular Perturbation Method yield
results comparable to those obtained using the Transformation
Method with appropriate placement of actuators.

The Transformation Method was found to be very effective
in eliminating control spillover and uncoupling of system
eigenvalues, when the number of actuators in the system was
equal to/or greater than the number of suppressed modes.
Where the number of modes to be suppr- ssed exceeded the numbef
of actuators in the system, the method provided the best, in
a least squares sense, actuator locations to minimize control

spillover.

44

L—-——-————‘M— 5 ’ S i " i el




o i i S 7 TP AT P At <k e aas ieas e DT ATt w S e A e e e e b T e

Reduction of observation spillover using the Transfor-
mation Method was found to degrade system response. The re-
duction of observability, an adverse effect of decreasing the
observation spillover, apparantly was sufficient to alter
the observation gain matrix, such that the eigenvalues of
A

A. - K Cr, which indicate the rate of decay in observation

error, shifted to the right, producing a destabilizing effect

on system response.

The modal error analysis conducted did not substantiate
a presupposition that a system with an unstable controller
would be more sensitive to parameter variation than one with
a stable one. In both cases, it was found that the system
was quite insensitive to modal error, with the eigenvalues
of the system never differing greater than the errors in-
duced. Data generated, however, did show that the uncoupling
of system eigenvalues was significantly more sensitive to
parameter variation in a system with an unstable controller.
Although this uncoupling sensitivity did not affect system
response in the model tested, it remains to be determined if

it would cause problems in a more complex model.
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Recommendations

In a large complex structure the number of modes to be
controlled and suppressed could become gquite larde. As the

number of modes considered in a model increases, the computer

capabilities as well as sensor and actuator requirements to
control the system would have to increase. The first concern,
therefore, in modelling a structure, is which modes should

be considered critical and included in the system. A method

of determining these critical modes, in a complex structure,

would have to be the first step in implementing the control

(i methods. Further study, of the methods presented in this
thesis, on a complex model is needed to determine the viabili-
ty of this approach to controlling large space structures.
Unstable controllers in a complex model should also be ex-

amined for sensitivity to modelling inaccuracies, as the

analysis presented could not dismiss this possibility.

e ey e e e
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L

FROGF AM LUDBS2(INFUT=/FJy0UTPUT=/7132, TAPES,TAPES,TAPE?)
DIMENSION 3L (20)9G6(2927)9C(2920)38B(592)yWNAT(27) 3Z(695) 4HWK(I3)
ZoAFrIME(20420) 9 (LY 95R0) gWIEC) gAP( Cy50) g HT (E98) 9 X(696) 3S(6H90),
ZAK (20 92) 020(2)42{) 3ZB(23920) yAD(2042.),4C041(20,420),CI42(20,420),
ZCK (25 10) 9BR(541)) JAR(17 y13)9gH12(20y)20) yHZL (144200 497220204200,
ZADDIMF (204,2)) 4 ADAMFR(229)20) 34 (69 5) 9BSIN(EH2) yBIN(D96) yKT(250)
ZSINIU) 3T1(2,1) 4yR(252),"IN(252),G1(1,5) yKCBIN(2,2),4F0B(2,42) 481 (293)
Z9CT(E »2) o CTR(592) yCTRC(E46) yFOB(345) ) XOB{35,5)920B(6,8)yRC(25E)
ART (191) 5 T1T(192) 3y TATR(1,42)9BAT(S5) 1) g RTBT(LyE)4gRTINV(L1,y1) 4B81TT(1,3)
Z9Z5 (b 30)4BX(0,2)yBRN(6542) 3CX(295) yCRX(298) 9yBRIN(EZ2)53T2(2,1)
Z9CINUEB) yCRSIN(Z 42) 9STN2(h) 3 T2T2(14E6)yKTL1(1,6)yCRT(592),T2T(142)
COMMON/SHAPL/L M

COMMCN/FUNCT/AP IJIM=Z 4 NF

COMMUN/MAINL/NDIM,NDIML,C0ML

COMMC N/INOU/KIN g KCUT 9 KPUNCH

COMMUN/MAEINZ/SOM2

EXTEF NAL FN

KEAL LgyM

REAL KT

COrPLEX W,Q

DATA I8/c/yIS/u/3IX/€/916/727 43127575 180P72Y/410/75(/4122/720/,
LIZA/2U/ 3 I8R/5/ 91421710/ 3 LAP/S 0/ 3IRK/E0/912/27/9ICR/2741IH12/720/
L12E/20/91AR/1]1/7 4yIARINV/1C/51A1BR7107

NC=1

N=3

N=3

NC2=2*NC

NRE=NR*2

NT =NR #N

N2=NT IM=2"N

NF =2* N2+NR2

NF 0=2+N2

NOIM1I=NDIM+1

ZETA=C.0u5

INIT=SD

READ® 9yLyM4PAIRL,PAIR2,FAIRIyPAIRY y(3L(TI) yI=1,NT) EI

IF (ECF (SLINPUT) «NEeDe) STOP “GRAZEFJLLY™

iEAD" (HT(I'I)’I=1,N2)

00 5 I=1,N2

DO & J=1,N2

FOB(1 4J) =0,

CONT] NUE

FEAD® » (FOB(I,1I),I=1,N2)

R(151)=R(2,2)=x08(1, 1)=K08(2y2)=1,

R(192)=R(241)=R08(1y 2)=R08(241)=).

00 3 I=1,NT

ENAT(I)=C(BLII)ZL)**2)* SQRT(EIZ/Y

00 &4 I=1,N2

00 & J=1,4N2

A(l,yJ)=0,

AD(IyJ)=5,

KODAMF (15J)=0,

AR(Iy J)=u.

AODWMFR (I, J) =0, .

CONTINVUE

ACkg1)=AD(Ls1)=AJAMP (hy1)==NNAT (1) %*2

A(592)=A0(5,2)=ADAMP (542)==-NNAT (2)**2
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ACE93)=AL(5,3)=ANAMP (6,3) ==WNAT (3) #42
Ally )=AD(1,0)=804MP (1,‘0)=1o
( AL2,5)=AD(2,%)=ADAMD (2,5) =1,
AC3,6)=AD(3,5)=ANAYD (3,6) =1,
Blagt )ZAD (Uyd) SADAMP (byis)==2,*7EFL=HWNAT (1)
ACzsf )=AD(5,5)=ADALD (5,5)==2,*ZE[A*WNAT(2)
A(tyt )=AD(596) =APAMP (6,5)==2,*2ETP*HUNAT (2)
A (Ly 1) =ADAMPR( Ly 1) = =WNAT (L) #+2
AR (55 2)=ADAMPR (G, 2) ==HEAT(5) +22
AR (6y 3)=ADAMPR (5, 3) = <HMAT(5) ¥#2
AR (1, 4)=ADAMPR (1,4) =1,
AR (2, £)=ADAMPR(2,5) = 1,
AR (3, 6)=ADAMP(3,€)=1,
AR (£ y 4)=ADAMPR (i £) = =2 * ZETA* WNAT ()
AR (5L )=ADAMPR (347 ) = =2, ¥ ZETA* WNAT (3)
AR (69 6)=ADAMP(5,6)= =2, *ZETA¥ WNAT (5)
PRINT 1113y FAIR1,PAIR2,PAIRZI4PAIK+sL¢MeEL
PRINT 1115, (3L(I)yI=1,NT),(WNAT(I),I=1,NT)
D0 17 I=1,N2
B(iy1)=8(1s2)=u,
19 CONTINUE
00 1z I=1,N2
DO 12 J=1,4N2
IF(I«NEJ) “T(I,J)-':’ .
12  CONTINUE
J=N+1
D0 15 I=J4N2
CALL MODES(B(I,1),8L (I-N),PAIR1)
( CALL MGDES(B(I,2),8L (I-N),PAIR2)
15  CONTINUE
DO 32 I=J,N2
Cl1,31I)=C(25,1I)=0.
35 CONTINUE
DO 37 I=1,NR2
C(1y I)=BR(I,1) =CR(2,I)=BR(I,2)=3,
37  CONTINUE
DO 4u I=1,NR
CALL MODES(C(1,I),8L (I),PAIR3)
CALL MODZS(C(25I) 43L (I) 4PALRM)
{ 2:  CunTiNUE
D0 &£ I=1,NR
CALL MODES(BR (1 +4y1) 4BL(I+N),PAIR1)
CALL MODES(BR(I+Ny2) $RL(I+N) yPAIR2)
] CALL MCDES(CR(1,I),3L(T+N),PAIRY)
CALL MCDES(CR(24I)53 L(I+N),PAIRM)
#3  CONTINUE
D0 53 I=1,N32
D0 53 J=i,NC2 i
; CRSIN(I,J)=CR(J,yI)
' BRSIN (1,J)=BR(I,J)
53 CONTINUE
: 00 %k I=1,NR2
| D0 E4 J=1,NR2 .
! ( CIN(I,J)=0.
Bin(I,J) =0,
54 CONTINUE
00 5¢ I=1,NR2
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61

€2

€3

.9

68

121

€7

97

CIN(,1)=1,

BIN(1,1)=1.

CONTI NUE

PRIN1 1645

PRINT*, * F

00 vi 1=1,N2
PRINT* 9y (WNT(Is3) gJ=1yN2)
COMNTINUE

uRITE‘, "

PRINTXy, “ R "

D0 €2 1=1,NC2
PRINT*#,3(R(I,J) 9y J=14NC2)
HlleE"’ [T

PRINT*, " FOB*

00 62 1=1,N2

PRINT*y (FOB(IoJ)9gd=1,y42)
WRITE+, ™ *

PRINT *, *"ROB"™

DO €+ 3=14N(2

PRINT* 4 (KOB(I4J)4J=1,4NC2)
FRINT 12J)¢

DO L5 I=14N2

PRINT 13003 (£JAMP(I,4J)yJ=1,N2)
CONTI NUE

PRINT 1325

D0 &1 I=1,NR2

PRLINT 1323, (AJDAMPR(I )J),J=1,NR2)
CONTINUE

PRINT 1440

DO 5t I=1,4N2

PRINT 1339,(3(I,J),J=14NC2)
PRINT 4«0

DO 49 I=1,NR2

PRINT 1350,5(BI(IyJ)9J=1,4NC2)
PRINT 15590

PRINT 13«'0,(0‘1,1),I=1,N2)
PRINT 1330’(C(2’I),I=1.’N2)
PRLINT 1550

PRINT 13509(CR(1,I),I=1,NR2)
PRINT 135 3,(C(2,1),yI=1,NR2)
PRINT 1575

CALL LSVUF(BRIINyNR2yNF29yNC29BINgNI2yNR293SINyHKyIER)
D0 of I=1,4NC2

WRITE+, SIN(I)

CORTINUE

00 121 I=1,NC2
T1(1,1)=8BRSIN(I,2)
TiT(1,I1)=T1(I,1)

PRINT 1580

DU 67 I=1,NC2

WRITE*,T1(I,1)

00 97 1=1,4NR2 -
D0 97 J=1,NC2

CT(I,J)=C(Jy])

COKTINUE

CALL LINV2F(RIByNC24NC2yROBINy2y4Ky,IER)
CALL VMULFF(CT,RLBINGN2yNC2yNC2,429NZ29CTR9N2yIER)
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i

1

57

S8

22

61

(2

56

84

81

CALL VMULFF(CTXpTgN2yNC23N29yN23NZ23CIRCyN24IER)
CALL MKIC(NZ A9yCTF2yFOFgX0Bys Z0BydRyINIT)

CALL VVMULFF(RIAIM9Cy NCZ ¢y NC29iIN29gNT2y 122yR2yNC2,1ER)
CALL VMULFF(RTyXOByNC2yN2yN2yNC2,N2,KTyNC241ER)
WNRITE*, * *

PRINT 20.0

00 9& I=1,4NC2

PRINT 13.0s (KT (I,J) 3J=1,N2)

00 122 I=1,4NR2

DO 122 J=1,NR2

S(I,J)zao

CONTINUE

CALL VMULFF(B,T 1yN22 )N 2yNCyNR2yNC2y 21T yNR 2y 1EK)
D0 1t 1 I=1,4NR2

BiTT(1,I)=91T(I,!)

CONTINUE

CALL VMULFF(TAT 32 yNCyNC2yNC2yNCyNC2, TATRyNC,y1E¥)
CALL VHMULFF(TATRyTLyNCyNC2yNC 9Ty NC29RTeNS9IEK)
CALL LINVZ2F(RTy NTgNT yRTINV,0,4WK,IER)

CALL VMULFF(BLT yRTINVyNR2yNCyNCyNF.29 NC3BRINgNR2,IER)
CALL VMULFF(BRRINy3LTTyNR2yNCyNik2y) NR2yNCySyNR241ER)
INIT=¢

CALL MRIC(NR23A3S9HT yXy3Z9MRy iNITH

1F (MK 4 EQe =1) 3TOP "MRIC DiID NOT JONVERGE"™

CALL VMULFF(RTINV)31TT4NCyNZyNR2)NCyNCyRTRY yNCyIER)
CALL VMULFF(RTBTyXyNCyhR2yNR2yNCyNR2y G1yNZ4IER)
IF (IER.EQe12C) STOP *BT*X BAD™

CALL VHULFF(TI’Gi,NCZ,NC,NQZ’NCZ'NC,;,NCZ|IER)
PRINT 1600

PRINT 1350’(6(1,1)’I=1,N2)

PRINT 1353,(G(2,1),I=1,N2)

CALL V”ULFF(P,G,NZ,NCZ;NZ,IB,IG,Z,IZ,IEQ)
IF(IERLED.129) STOP "B"G BAD™

DO 1L 2 I=1,yN2

DO 1(2 J=1,4NC2

AK (19 J)=KT(Jy D)

CALL VHULFF(AK,CyN2yNCZyN2yIAK,IZ,73,1Z8,1ER)
1J08=7¢

CALL EIGKFU{ADAMDy N2, IATP,IJOByHyd 9y INy HKy IER)
IF(IERNELD) PRINT®,“TER = "™yIER

PRINT Sdu

DO 57 I=1i,4N2

PRINT*,H(I)

CONTINUE

DO 6¢ I=1,N2

DO 6t J=1,N2

CONTiINUE

PRINT 17540

00 a4t I=1,N2

PRINT 130i0,(25(TyJ) s J=1,N2)

1J08=0

CALL EIGRF(Z54N29N2yIJ0ByHsQsIQeIXyIER)

PRINT 1745 .

00 81 I=1,N2

PRINT*, W(I)

CONTINUE

PRINT 1760
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— T me =L

114

111

55

FACTCR1=35.8
FacTcpz=1.2
WRITE®, *
H&lTE‘, [T}
HRITE‘, s o

’

?

HiIT[ ‘ " e

WRITE®, ™

€0 126 IJ=1,9

PRINT®, “FACTOR 1 = *“, FACTORL, " FACTOR 2 =

00 114 I=14N2

D0 114 J=1,4yNC2

BRX(1 gy J}=BX(I94J)=CX(JyI)=CRX(JyI) =0
CONTINUE

BX (9 1)=FACTOR2¥*B(5, 1)

BX (by 1)=FACTORL1*3 (5 1)

BX (69 1) =FACTORL*T (6,4 1)

BX (Gy 2)=FACTORZ%28(5y 2)

BX (5, 2)=FACTORL*3 (5, 2)

BX (4 g 2)=FACTOR2%2 (2, 2)

ORX (% 31)=FACTOR2Y 3R(5,41)

BRX(: 3 2)=FACTIRL" BR(5,2)

BRX(€ y1)=FACTOR1* BR(E&,1)
BRX(2,42)=FACTIR2"BR(6Hy?)

PRX (-~ 91)=FACTIORL " A {441)

BRX(+ y2)=FASTOR2"B(4y2)
CX(1,1)=FACTOx2*C (1, 1)
CX(142)=FACTGRL*C (L, 2)
CX(2y1)=FACTOR1*C (2, 1)

CX (29 2)=FACTOR2*C (24 2)

CX (1, 2)=FACTOUR2*C (1, D)

CX (25 3)=FACTGR1*2(2, D)
CRX(1,41)=FACTOR27CR(1,1)
CRX(1,2)=FACTIR1%CR(1,2)
CkX(2451)=FACTOR1IF TR 2,1)
CRX(242)=FACTIR2"CR(242)
CRX(1,3)=FACTIR2* CR(1,3)
CRX(2453)=FACTORL*CR(2,42)

CALL VMULFF(BIX gGgN2yHC29N29yIBRyIGyHZ219IH21,41ER)
IF(1ER4GT ¢129) STOP *"Br+G BAD"™

PJUINT i7/ 0

DO 111 I=1,N2

PRINT 13u¢ 0y (H21 (I,4J) 3Jd=1,N2)
CONTINUE

CALL VMULFF(BXyGyN2yNC2yN2,IB,IG,Zy1Z,y1ER)
DO B2 1=1,4N2

00 £t J=1,N2

APRIME (I J#N2)==7(I, J)
ZA(IsJ)=A(14J)=T(1,])
2(19J)=AD (14 N=2(1yJ)

APRIME(I J)=Z(I,J))

221y J)=2(I,))

APKIME(I+N2,J) =10,

CONTINUE .
1J0B=3

CALL EIGRF(ZZyN2,I727 4IJ0OByH,Q,IQ)HWKyIER)
IF(IERNEJJ) PRINT®,"IER = "“SIER
PRINT 17¢ @
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0DQ 6. l=1yN2
PRINT 430 0,(2C¢IyJ)y J=1,4N2)
(’K COLTT NUE
PRINT 18ui ;
GO &t 1=14N2 ‘
PRINT*,M(I) !
65 CONTI NUE
CALL VMULFF(nKy CXgN2NT29N2yIAKIZ9Z3,17%,IER)
DO 10 ¢ I=g4N2
DO 106 J=14N2
I8 (15, J)=AD(14J) =78(I,J)
ZA (I, J)=Z8B {1+ 0}
APRIME (T+N2yJ#N2)=28(TI,J)
] 18, CONTINUE
4 l508=¢
! CALL EIGRF(ZAyN29I7A,TJ0BHyQyINy WKy 1EK)
IF (It keNce3) PRINTTy "TER = ", IER
PRINT 22L3
00 15 I=14N2
PRAINT 1300,(ZB(I,J) s J=14N2)
16¢ CONTINUE
FRINYT 3¢
DO 11¢C I=1,N2
PRINT*4H(I)
11¢ CONTINUE
CALL VMULFF (AKX, CRXgH29HC29N2yIAK) IC,H12,1H12,1EK)
D0 112 I=1,NR2
DO 112 J=1,N2
(: APRIME(I+12,J)=H21(T,J)
APRIME(I+12,J+86)=H21 (I, J)
APRIME(J,I#12)=).
APRIME(J+b4I+L2)=HL2(JyI)
132 CONTINUE
00 113 I=13,NF
D0 113 J=134NF
APRIME(L, J)=AR(I~12, J=12)
s 113 CONTINUE
; - D0 115 I=31,NF
% DO 11% J=1,4NF
AP (14 J)=APRIME(Iy )
11  CONTINUE
PRINY 25¢ ¢
‘ 00 99 I=1,NF
! 99 PRINT 26,0y (APRIME(I yJ)9J=1,6)
: “RITE;, [T
uRITE‘" . 9
00 126 I=1,NF
! 126 PRIINT 263G, (APIIME(T 9J) 9 J=T7,412)
; WRITE*," *
{ “R‘TE"“ .”
DO 127 I=1NF
127 PRINT 26G0o (APRIME(I yJ) 9J=13,18)

1J08=¢ -
( CALL EiGRF(APyNFyIAP yTJOB,yHyQyINyNKy1ER)
- IF(IERWNEo0) PIINT®, "IER = *,1ER

NRITE‘ ’ o o
NRLITE®, *
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PRINY 24.0
DO 1.9 I=1,NF
PRANT*,H (D)
( 2% CONTY NUE
' FACTUCR1=FACTORL #2405
' FACTUR2=FASTCR2 =63
F 125 CONTJINUE
G TC 1
905 FOSMET(//710X,"THE ZIGEMVALUES OF B™7/)
1140 FOFMLT(LHL///77 925Xy “CLNTILEVER 3EAM WITH TWO SENSORS,
%2 KCTYUATORS, 3 TCHTROLLZD MODES AND 3 RESIOUAL MCDES™,
LIILEX 9 “FLIRST ACTJATOR POSITION=")F14.8,
%/750% 3 “SECIND ACIUATCR POSITIUN =",FiLk,8,
%/ 50X 9% FIRST SENSOR PCSITION =", Fl+e8,
UI75GXy “SECOND SEMSOR POSITION ="yF1%e3,
LI750X 3 "BEAM LENGTH=",F= .1,
%/50Xy“BraM MASS JENS ITY/ZUNIT LEN3TH = *“yF3,6,
%/30X, “BEAM STIFFNESS (EI) = “,F3.2)
111% FORMAT(/50X,*°R00TS OF “HE CHARACTERISTIC SNUATIONS"™,
%ot Xy “FIKST MODES * 5 E27e1u4y/5EXs*SECOND MIDES “yE20edluy
%/55Xy “THIRD MODES *, E2 .4l
%/5.%y “FOURTH 400ET " ,E23 41k,
%ISEXy “FIFTH MODE 1 " ,E20.1L,
/5L Xy “SIXTH MIDZ 2, £27¢1ky
%75 (Xy *NATURAL FREQUENCIESt™,
%Io8 Xy “FITST MIDE?S "y E2C ¢4b, /55X, *SESIND MIDES 5 E20e4u,
A58 Xy “THIRD MIDEL *,E20 414,
%/55Xy “FOURTH MOJE 1% ,E2341%,
%/55%Xy “FIFTH MODE ¢ * ,£20,14,
( %I5EXy “SIXTH MOOEL ", E2C414)
12.5 FORMAT(//25Xs* THE ™A™ MATRIX*/)
13.0 FORMAT (/2X,6E1be)
1325 FORMPT(//20Xs*THE *“A*™ MATRIX (RISIDJAL)I*/)
1350 FOFMAT(/2Xy5E1047)
14y FORMET(//72CXe* THS "8 MATRIX*/)
1350 FORMAT(//745X,*THE *3* MATRIX FOR PESIDUALS' /)
1500 FORMAT (//723Xs*THE "C*™ MATRIX*/)
; 155, FORMET(//729X4*THE “C* MATKIX FOR RESIDUALS*/)
1 1575 FORMAT (//29X,*SINGULARITIES OF T4E "5* MATRIX FOR RESIDUALS*/)
1675 FORMLT(//23Xy*SIMNGULARITIES OF THE > MATRIX FOr FESIDUALS*/)
1585 FORMAT (/72X #THE “T* MATRIX FOR R*/)
1584 FOKMAT(//20X,*THE T MATRIX FOR CR"7)
15,0 FORMAT(25X,*THE “G"™ MATRIX*/)
1535 FORMAT(//720Xe*THE 3R TIMES T MATRIX*/)
165 FORMBT(//40Xy*THE WS IGHTS USED=/)
1750 FORMAT (//57X,*THE **A 486" MATRIX*/)
1752 FORMAT(//20Xy*THE B + BG = KC MAFRIX*/)
1752 FOFMAT(//10X+*THE SIGENVALUES OF A + BG = KC MATIIX*/)
1766 FORMO T(//7149X,"TH ACSOUNT FOR MODAL SRROR THE 8 AND C*
%2/ 106X g “"MATRICLES ARS VARIED BY FACTIR 1 FOXR ODD ELEMENTS ANOD *
%//710X,*3Y FACTOR 2 FCR EVEN ELEMINT3"/)
1770 FORMAT(//10X*BR TIMES G MATRIX*/)
130N FORMET (/710X THE EIGENVALUES OF A+3G*/) .
1°°C FORMAT(L13X,"THE SMALLEST REAL PAT = “,E2).13/)
.U FORMAT(/735Xy*THE "K* MATRIX TRANSPISED*/)
2.0 FORMLT(//57XsTHE “A=KC* MATRIX*/)
2300 FORMAT(//10X,"THE EIGENVALUES OF A=X2"/)

(
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243 FORMAT(//740X,"THE ZIGENVALUES OF THI SYSTEM"/)
25-0 FORYMAT(//4uXs™ THE SYSTEM MATRIX®/)
2610 FORMAT (/2X36E1047)

END
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SUGROUTINE MODES(FPHIZRLIHX)
COMMCN/SHAPE/ZLW M
REAL LM

BX=BLI/L" X
PHI=((SIN(BLI)-SINH(ELI))'(SIN(8()-SINH(P())+(COS(BLI)+COSH(BLI))‘

% (CGS(BX) -COSH(BX))) /7 (SCRT(MFL)*SIN(3LI)“SINH(BLI))
RETURN
END
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Appendix B

Singularity Computer Program Listing
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